TURBINE BLADE TRACK ASSEMBLY(9)
时间:2020-08-31 01:38 来源:网络整理 作者:bosi 点击:次
The hanger 1102 may be formed of a metallic or other material as desired and is structured to be secured to a stationary object such as, for example, an engine case, a stationary mount, or the like. However, it should be understood that the hanger 1102 may also be formed from non-metallic materials such as inter-metallics, composites, and the like. The hanger 1102 includes a coupling portion 1104 defining a number of recesses 1106. Each recess 1106 is configured to receive an attachment portion such as, for example, the attachment portion 104. In one embodiment, each recess 1106 includes a pair of axially-opposed mating surfaces 1108 configured to engage adjacent mating surfaces of the attachment portion 104 so that the attachment portion 104 may be trapped or captured within the recess 1106 along the radial and axial directions. In one embodiment, the coupling portion 1104 can be structured such that the recess 1106 is open adjacent at least one circumferential side so that the attachment portion 104 can be inserted into the recess 1106 in a circumferential direction. As shown in FIG. 12, a portion of the hanger 1102 has been removed to reveal the attachment portion 302 adjacent the first axially-facing surface 112 of the segment body 106, which is illustrated as being positioned in front of a coupling portion 1104 coupled to another attachment portion 302 adjacent the opposite second axially-facing surface 114. FIG. 13 is an elevation view, taken in an axial direction, illus rating a partially-constructed turbine engine blade track assembly 1300 according to one embodiment. The turbine engine blade track assembly 1300 includes a plurality of blade track assemblies 1100 arranged such that the radially-facing inner surface 108 of a segment body 106 in each blade track assembly 1100 is axially and circumferentially aligned with an adjacent blade track assembly 1100. Accordingly, the arc-shaped radially-facing inner surfaces 108 of the blade track assemblies 1100 can be arranged circumferentially about an axial flow engine axis 1302 to define a gas flow path 1304. Although not shown, a rotary turbine having a plurality of rotary turbine blades can be disposed within the gas flow path 1304 so as to be rotatable about the axial flow engine axis 1302. Radially-facing outer tips of the rotary turbine blades can abut or otherwise be positioned closely adjacent the radially-facing inner surfaces 108 of the blade track assemblies 1100. A clearance between the tips of the rotary turbine blades and the radially-facing inner surfaces 108 can be selected to enhance the operating efficiency of the gas turbine engine. In one aspect of the present disclosure an apparatus includes a blade track including a segment portion having a first surface and a second surface opposite the first surface, wherein the first surface is arcuate; and an attachment portion extending from the second surface, wherein a coupling region of the attachment portion has a dovetail shaped cross section. The attachment portion and the segment portion of the blade track may be formed from a ceramic matrix composite material with a preform structure comprising at least one reinforcement wrap positioned around shaped ceramic fibers with at least one ply of reinforcement material, and a ceramic matrix material infiltration into the preform. The attachment portion can include a plurality of attachment portions, wherein each attachment portion includes a coupling region with a dovetail shaped cross section. A second attachment portion extending from the second surface can include an open channel with a substantially C-shaped cross section. A hanger having a coupling portion can be structured to receive the coupling region of a corresponding attachment portion of the blade track. The hanger and the blade track can have different coefficients of thermal expansion in exemplary embodiments of the present disclosure. A plurality of blade track segments can be arranged circumferentially about a common axis to define an exhaust gas flow path for a turbine. Another aspect of the present disclosure includes a turbine blade track assembly comprising a blade track segment portion having a first surface, a second surface opposite the first surface, and a pair of spaced apart third surfaces extending from the first surface to the second surface, wherein the first surface is an arcuate surface adapted to form a portion of an outer wall of an exhaust gas flow path; a blade track attachment portion extending from the second surface, wherein a coupling region of the attachment has a dovetail shaped cross section; and a blade track hanger configured to connect to fixed structure positioned in a gas turbine engine, the hanger having a coupling portion structured to receive the dovetail shaped coupling region of the blade track attachment portion. The components of the blade track assembly can be made from the same material or alternatively from different materials as desired. (责任编辑:admin) |