广告位API接口通信错误,查看德得广告获取帮助

时尚汽车_汽车生活移动版

主页 > 经销 >

人工智能:从实验室到医院的距离有多远?(2)

2011年,在美国麻省的一家医院,一位晕倒的老人被救护车送进了急救病房。他被立即安插上AI体征监控设备。如果他的生命体征出现危险,设备就会发出警告,召唤护士。然而,第二天,这个老人却死在了病床上。

死之前监控设备的红灯闪了一夜,但是被值班护士一遍一遍按掉。护士的疏于职守自然难辞其咎,但是从系统的角度来看,有一个问题大家都无法回避:许多医院的AI监控设备,很多时候都只是误报。

患者的死亡,责任到底该由谁承担,AI是否能为误诊负起责任,这是一个需要思考的问题。

2. 数据孤岛

就像汽车需要汽油才能行驶,数据是AI能运行起来的基础。AI通过“吃进”海量的医疗数据,来增加自己的“经验”,从而让自己变得更“智能”。然而在中国,医疗数据看似很丰富,而事实上可用性并不高。

比如:医院之间的数据互通就做得不好,如果一个病人在不同医院就诊,那么取得该病人完整的历史数据就变得十分困难。

而且不同医院之间,由于使用的硬件仪器不同,导致数据格式各异,难以标准化。各个医院之间的数据,就像汪洋上的一个个孤岛,彼此独立,无法连成一片,无法互通有无。

许多业界专家呼吁,将各个医院数据的私有格式转化为标准格式,让医疗数据能够通用,但是响应者寥寥。

即使AI能获得高质量的医疗数据,它还有无法回避的棘手问题:患者的数据会被AI公司泄露吗?毕竟应该没有一个人会希望自己的隐私被泄露。

3. 落地艰难

除数据问题外,AI在医疗行业的落地还存在模式和制度的问题。

比如:美国特拉雅诺娃实验室开发了一套结合影像和AI的心脏造影方案,构建出整个3D全息心脏模型。它能够模拟心脏动态,利用它,医生可以准确地找出患者病灶。

然而这项技术真的要从实验室走向医院,前景并不乐观。

其最大的挑战来自于美国食品药监局(FDA)的监管和审查。任何一项技术想要投入临床应用,都免不了和FDA进行一场旷日持久的拉锯战。如果无法将研究成果转化为审批标准,那么无论产出再多研究成果都是无用功。

04 总结

尽管医疗AI还没有大规模落地,从实验室到医院还有很长的一段路要走,而且在现阶段,医疗AI无法像人类医生那样做诊断,不能取代人类医生。

但是AI医疗是很好的工具,它的出现切实地提高了医生的诊断效率,提升了医疗质量,减少了误诊的可能性。

在科学急速发展的今天,我们需要更高水平、更科学的技术进入医疗领域,而AI或许是最好的、也是时代最合适的技术。未来,AI将在医疗领域有着举足轻重的作用。

#专栏作家#

Alter,微信公众号:spnews,人人都是产品经理专栏作家,互联网观察者。专注于移动互联网、智能硬件、电子商务等科技领域。独立的自媒体人,走在创业的路上。

(责任编辑:admin)
广告位API接口通信错误,查看德得广告获取帮助