广告位API接口通信错误,查看德得广告获取帮助

时尚汽车_汽车生活移动版

主页 > 行业 >

汽车行业应用BI,应该从哪个环节入手?

本文采访对象为Jeff,音智达项目总监,汽车行业资深项目管理专家。20年汽车行业数据分析系统建设经验。曾参与以下客户项目实施:奔驰,宝马,奥迪,捷豹,上汽通用、上汽大众、蔚来汽车、威马汽车、观致汽车、上汽乘用车、北汽新能源、北汽麦格纳、纳铁福等。在这些项中负责项目管理、业务需求调研和设计,在业务分析和可视化设计上有丰富的经验。

从历史发展的角度来看,国际一流汽车企业的发展历程都经受了数次的环境变化、市场波动、质量危机、创新需求的考验,也都通过多次的质量改进、升级,不断提升质量管理水平,进而持续提升产品竞争力。从最初的福特大批量生产,发展到丰田的精益生产模式,全球汽车产业市场竞争中,因时制宜,找准符合时代需求的方向,才能完成产业的转型与升级。

以智能制造为背景的今天,汽车企业面临着更多的挑战——更短交期、更高质量、更个性化的定制方案。全球汽车产业已发展超过百年,成为高度复杂的成熟产业,在自动化、信息化方面都处于较高水平,企业间在硬件设施方面的差距逐步缩小,竞争的侧重点向运营管理转移,以获取持续优势。相较于过去的“粗放型”管理,企业需要向“精细化”的管理过渡。

其中重要的一点,就是充分利用企业在物联网时代获取的大量数据,包括企业内部与市场、技术、质量等相关的数据,也包括来自企业外部的社交媒体、行业动态等数据。数据挖掘已经成为企业为自身把脉,及时调整优化业务流程及运营模式的重要决策依据,也是企业应对舆情及掌握市场动态不可缺少的得力工具。而面对浩瀚的数据海洋,如何对数据进行融合清洗,保证数据的正确性,继而利用合适的查询和分析工具快速、准确地为企业提供报表展现与分析,成为企业落实数据价值的重要一环。

问题一:BI在汽车行业的应用场景有哪些?

BI可以应用于制造工程,通过大数据与物联网应用,提前对发现的潜在问题进行解决。比如对设备进行管理,包括设备使用情况及费用分析,设备的维修保养分析及预测;也可以对能源——如水电煤等的消耗进行管理,包括能源利用率,节能减排及潜力分析;还可以跟踪工程更改订单的执行情况及其过程中的费用使用情况。 

1

 

能源消耗趋势

在质量管理过程中,BI可以提供一目了然的质量运行状况,并基于趋势分析提供标准报告模板;对产品的缺陷率进行跟踪,如缺陷数目,并利用帕累托分析等来支撑质量部门解决特定的不良问题。每个缺陷都需要对应到相关的责任部门进行改善,并追踪改善结果,切实可行的改善方案将存入知识库中,便于知识共享及相关人员培训学习,真正将企业的工程经验沉淀下来,成为企业的技术财富。如果发现类似的问题,可以在知识库中去查找,通过算法推荐解决方案。

8

缺陷率查询

在生产采购方面,利用BI可以对供应商绩效进行考核,依据各个供应商的响应速度、技术实力、成本、交付时效、质量水平等对供应商进行全面考核,遴选优质供应商。对生产采购流程进行监控,查看物流计划与采购计划是否匹配。

9

 

BI在生产采购方面的应用  

问题二:观数台在汽车行业有哪些实际的应用案例?

移动互联、云计算、物联网等技术快速发展,数据总量呈现出指数型的增长态势,数据来源也越来越多样化。随着数据的增多、需求的提高,如果采集到的数据缺乏合理的分析、梳理、追踪,很难真正成为用于指导企业决策的活数据。正是基于此,新一代智能协同BI平台——观数台可以成功串联起企业各个部门数据,找出影响业务部门的瓶颈,还能通过深入挖掘,将企业多年的生产经验沉淀为有用的工业知识,改善产品质量及生产效率。

从应用的业务部门来说,市场、计划、研发、采购、物流、生产、财务、质量、销售、售后等各个部门产生的数据都可以作为分析要素。

在生产环节,全面质量管理理论中的五个影响产品质量的主要因素“人机料法环”都可以作为切入点,实现质量水平的提升。以某汽车企业的实际应用为例,通过对比早班、晚班或者A班组、B班组的生产数据,以“人”作为研究对象,借助观数台强大的关键字过滤器及关联搜索,查找与“人”相关的数据,包括工人年龄、工作年限、工位等数据,并基于关联强度由强到弱排序。用户可灵活拖拽相关因子,实时获取相关数据的可视化结果。观数台提供丰富的颜色展现数据间的结构、因果、相关性等,企业可快速获取数据间潜藏的逻辑联系。通过观数台自助式分析,企业挖掘出生产效率与检测质量有待改善的班组及人员,并针对性地加强教育培训,从而最大限度发挥人员的潜在价值。

在质量环节,汽车发动机冷测试过程会产生很多参数,包括机油压力,转速、转矩等,基于过去数百万的发动机冷测历史数据,通过观数台动态的数据关联及全方向的数据查询路径,并结合机器学习来预测当前发动机冷测通过的概率,企业可以对数据关系理解更透彻,摆脱传统惯性思维限制。对未通过发动机冷测试的失败类型进行分类,采用大规模数据的算法优势对异常值进行预览和显示,让企业更好地洞察大规模数据集,揭示关键要素间的潜在联系,指引企业通过跟踪一些参数的早期变化来预测发动机测试的结果,从而在产品进入下一工序之前即对异常进行拦截与改善,持续提升产品质量可靠性。

10

汽车发动机冷测试

(责任编辑:admin)
广告位API接口通信错误,查看德得广告获取帮助